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VARIATIONAL FORMULATIONS OF BOUNDARY-VALUE PROBLEMS IN 

MATERIAL FAILURE 

A. F. Revuzhenko UDC 539.375 

In [i] we considered the formulation of boundary-value problems in the deformation of 
materials which possess the property of localizing slip. In the present article we consider 
variational formulations for the general case of material failure, when there are severe dis- 
continuities both in the tangential and in the normal components of the displacements. 

i. We shall confine our attention to the case of plane deformation or a plane stressed 
state. We introduce the cartesian coordinates Ox~x2. We denote by S the deformed region 
bounded by the contour F. Suppose that for specified load parameters the region is divided 
by a line of severe discontinuity of the displacements. Hereafter, it will be sufficient to 
confine our attention to the case of a single line. The results remain valid for the case 
of several lines. We assume first of all that the trajectory of the distribution of the 
lines is known either from experimental data or from symmetry conditions, or that it is 
given on the basis of additional concentrations. For one rather broad class of models the 
boundary-value problem of the propagation of the discontinuity lines and the deformation of 
the material outside the lines can be reduced to the determination of the stationary values 
of certain functionals on the class of discontinuous functions. The functionals must depend 
both on the behavior of the functions in the region of smoothness and on the value of the 
discontinuities of these functions. Suppose that in S there are given Certain fields of 
stresses ~ij, displacements Uk, and variables ~r(i, j, k = i, 2, r = i, 2, ...). We define 
the functional 

w .f '~'' § o~ § ~,,.+, + (.~. u,~'~, a, ~-, m.~,l, 
S F S ' -  L I '  

(1.1) 

where ~ = ui,2 + u2,1; o12 = a=1; U, ~ are functions defined on the line of discontinuity L 
and the external boundary. Here and hereafter, a comma before a subscript denotes differ- 
entiation with respect to the appropriate coordinate, and the superscripts +, -, indicate 
the notation in the regions to the right and left of L. We assume that on real solutions 
the functional is stationary. We consider the formhlation when all equations are completely 
determined by the variational principle, and consequently there are no other limitations 
within S +, S-. The necessary condition for an extremum leads to the following system of 
Euler--Ostrogradsky equations: 
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FO-2, ~ - -  

Ful--~{F,,,.,]--~.r={Fv}--=O, F%--~q {Fv}-- . {F,*2.a}=:C;,~ 

o o 
Foil -- ~ {rau,1} - -  ~ {Fall,,} = O, 

0 o a 0 
{Fo  ,I 1 - -  { F o . , : }  = O, - -  f . . . , , }  - -  = O; 

o F o 1% - -  oT.~l ~,,~1 - ~ {F~,.,} = 0; 

(1.2) 

(1.3) 

(1.4) 

the condition on the line of possible discontinuity 

AF6uT + A~6u~. + O~6g~ + BY,..,_6g~ + B;,,.6g~ + A;6~7 - -  

_ [A+~u~( + A.*,.~u + + B + 6 o ~ ,  + • + ~.,..~,~2 + B+~(~t,. + A+~X, ,+] + ~ u  = o 
( 1 . 5 )  

and the condition on the external boundary F 

(l,',q.~ cos r + F v sill r ~U~ 4- (FV COs r 4- F~,v.., s i ,  r 5u,~ + 

(l" q~ F. , ,  , si,l ~p) 6~.,., -[- ( l " .~ucosq~  - ! - / % n , . , s i n ~ ) ~ , ~  -t- ~ ~.,,,,~cos + ~'-','.' . .  

--[- (Fo-12,1 c o s  q) ~-  ]"ff12,2 Sill ,l~) ~0'12 -~ (F~, .  t c o s  II~ -I- ~'~r,2 Sill I13) ~ r  .... ~}H. 

( 1 . 6 )  

The subscripts of the function F denote partial derivatives; the braces denote total deriv- 
atives; ~ is the angle between the external normal to S and the axis Ox~; ~ is the angle 
between the normal n to L and the axis Ox~ (the normal is external with respect to the region 
S-). Furthermore, we use the following notation in (1.5): 

Al := Fu. . ,  cos ~ q- F v sin ~,  

BI~ =: Foi l ,  1 cos or -1- Fou,2 sin a ,  

B ~  = F~,..,,i cos cr q- Faa~., sin a ,  

A., :-: Fv cos ~ q- F . . . .  sin a ,  
" 2,2 

B~., : :  Fo.,.,. 1 cos ~ q- Fa,,., .). silt ~r 

A~ ::: F~,. a e o s a  + F~,.,z, s in a .  

(1.7) 

The resulting equations, boundary conditions, and conditions on the line of discontinuity are 
written in general form and outline a specific class of deformation and failure models. Our 
further investigation may be carried out in several possible ways. First of all, we note 
that the system (1.2)-(1.4) must be equivalent to the equations of equilibrium and state. 
Furthermore, all the equations must be invariant with respect to translation and rotation of 
the coordinate system. The conjugacy conditions on L and the boundary conditions must have 
a specific mechanical meaning. The general restriction on the functional may be investigated 
on the basis of any of these three requirements. The simplest way is to analyze the mechani- 
cal meaning of the conditions on L and F. 

We introduce on L the following notation: 

s i - -  ui ~ + u F ,  R ~ = u i  ~ - u F ,  R ,~==cos~f r  l q - s i l l ~ R 2 ,  ( 1 . 8 )  

gm - - s i l l ~ g  l + c o s ~ g ~ .  ~ c o s ~ +  =: .,  ~1 ::: f i l l  ffl2 Sill ~ ,  

E~ =: %2 cos ~ + %.z sin u, Z,~ -= cos ~Z l + sin ~E.z, 

L' - - s i n  ~Z l -[--- m ::: COS ~ ' 2 "  

The q u a n t i t i e s  R i ,  Rn,  Rm a r e  t h e  p r o j e c t i o n s  o f  t h e  d i s c o n t i n u i t y  i n  t h e  d i s p l a c e m e n t s  o n t o  
t h e  a x e s  Ox i and  t h e  d i r e c t i o n s  ~ = { c o s  a ,  s i n  a } ,  m = { - - s i n  a ,  c o s  a } ;  Z i ,  Zn,  Em r e p r e s e n t  
t h e  same p r o j e c t i o n s  o f  t h e  s t r e s s  v e c t o r  on an  a r e a  t a n g e n t  t o  L .  

We a s s u m e d  e a r l i e r  t h a t  t h e  f u n c t i o n a l  i s  s t a t i o n a r y  on t h e  f i e l d s  o f  d i s p l a c e m e n t s ,  
s t r e s s e s ,  and  v a r i a b l e s  ~ r ,  w h i c h  a r e  i n d e p e n d e n t  o n l y  w i t h i n  t h e r e g i o n s  S + ,  S - .  On t h e  
c o n t o u r s  F and  L we a d m i t  t h e  p o s s i b i l i t y  o f  c o n s t r a i n t s  w h i c h  may o r  may n o t  b e  " c o o l e d "  b y  
t h e  v a r i a t i o n a l  p r i n c i p l e .  I n  p a r t i c u l a r ,  on L we s h a l l  a l w a y s  a s s u m e  two s t r e s s  c o n t i n u i t y  
conditions: Z~ = Z~, Z~ = E~, or 

(Moj ,cos  ~ -~-3/o, .~si , '~)  ~ ' =  (J~oucos ~--i.-Mamsi,, ~) - ,  ( 1 . 9 )  

(Momcos a + Mo22sin ~)+ = (MoIs  cos ~ -k- Mo2zsin ~ ) - ,  
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where ?I is a constant. The condition (1.5), taking account of (1.8), ( 1 . 9 ) ,  can be repre- 

sented in the form 

- -  B~-~, - -  B~:, A 7 - -  A ,  + @ . 4 7  - -  A + 
( t .10) + 5Z[  B(t  B~+* -4 62.,. "~: ~ g- 6s t - -  6s., " 

cos a ' " s,n ~ 2 " :2 + 

-i- 

.}- 5t~,, [ 

l{ i A + { A F  

Ai ~ --I-A~ At + A;- ] 
cosc~ " =, " s i n ~  + 

+ '  ] A 2 - i A O  

The function U must be invariant with respect to spatial displacements (Us i ------0). 
(i.i0), (1.7) we obtain two continuity conditions: A t = A~ or 

(1:.~,~ cos  ~ + Fy sin ~ ) +  = (F.~,~ cos ~ + F~ s in  ~ ) - ,  

,' ~i,, - :  (g, ,  ~ o ~ a  + m ~ ) - .  (1"~ cos ~ + 1 ..,,.,. (z)+ F.,,.,., 

(i.lO) 

Then from 

(i.l!) 

Thus, from the assumption that a variational formulation exists and that the function 
defined on the line of discontinuity is invariant with respect to spatial displacements, we 
obtain two continuity (conservation) conditions on this line. This result is not accidental; 
it is a special case of known fundamental connections between the properties of invariance 
and the laws of conservation. 

It is natural to assume that the function U may depend only on continuous stress compo- 
nents. Therefore, in the general case the brackets that are multiplied by the variations ~0~2 
must vanish. Unlike (i.i), this last requirement leads to constraints on the variables only 
on one side of L: 

ffoll,I -- ]"al:L 2 ~-~ {), ffa~,~:~, ~, -- t "t:~,1 "~- O, l:~ -.~ O, F%2,t  ~ -  O. 

Consequently, the generating function F can depend on the derivatives of the stresses only 
through the combinations 

t'q -: an,~ +- o'j~.~, P,,. := aia . l  I- a.,_.2,.2. F = F ( . . . p 1 ,  P., �9 �9 .). (i.12) 

The validity of the representation (1.12) follows also from the fact that on the boundary F 

there may be specified some information concerning the stresses defined only on the areas 
tangent to F. The necessity of (1.12) for interior points of S +, S- can be shown by starting 
with the requirements of invariance. 

The results enable us to simplify somewhat the system (1.3) and the conditions (1.5), 
(1.6): 

where 

" <J l' 6 - ,  ( /  . - -  cos0~.+ ( l : j ,~ . - -  F : _ ] s i . c ~  -i- 

' A,SR, ,  +- ~l,,fil~,,, i- A, :~ 6L,!- . \ ; : 6 L /  6U. -T -  - -  = . 

(1.!3)  

(1.14) 

A .  - A, cos a -F A., sin a ;  A.~ ~ - - A .  sin ~ -F A,., cos a ;  

(1.15) 
' I".~ (6aLj cos r C 6,s~ si, tp) :- I"..,_ (6(TI~ CO• lit 'i- 5(3"22 Hi|| hi) ) ~- 

i (Fz , , . t c ( , , ~q :  i Fz , , . a s i . , l ' ) 6X.  611. 

We s h a l l  c o n f i n e  o u r  a t t e n t i o n  t o  t h e  c l a s s i c a l  c a s e  i n  w h i c h  t h e  s t a t e  o f  a n  e l e m e n t a r y  
v o l u m e  o f  t h e  m e d i u m  i s  c o m p l e t e l y  c h a r a c t e r i z e d  b y  t h e  s t r e s s  a n d  d e f o r m a t i o n  t e n s o r s .  F rom 
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this it follows that on the external boundary, information can be specified only concerning 
the displacements or stresses. Therefore, as is shown by formula (1.15), the derivatives 
Fpi must be expressed in terms of the displacements 

/"~,, K . , .  I",,: Kt~.  (1.16) 

where K is a given constant. 

We noted earlier that on L the two stress continuity conditions (1.9) and the continuity 
condition (i.ii) must be satisfied. The formulas (i.ii) should not specify any new Conditions 
in relation to (1.9). This last requirement will be our basis for the construction of the 
functionals. 

If a functional depends on the derivatives %r,k, then, as is shown by condition (1.15), 
the variables %r must reduce either to displacements or to stresses. The introduction of 
such variables leads to a problem in a space of larger dimension, where equations of the 
type %r = oij, Uk must be satisfied on the solution. The generalizations to this case are 
obvious and will not be considered further. If the functional depends on the variables %r 
themselves, then Eqs. (1.3), (1.4) will describe in the general case some plastic state of 
the medium. On the other hand, the diagram of stresses versus discontinuities of the dis- 
placements, which is determined by the function U, must, by virtue of its mechanical meaning, 
have a descending branch. Therefore, if we take account of possible plastic flow outside the 
line of discontinuity, we must also take account of the unloading effects which take place 
as a result of the development of the line. In the present study we shall not consider this 
problem, and therefore the case in which the functional depends on Xr will be excluded. 

The continuity conditions (1.9), (i. Ii) show that the system (1.2) must have the meaning 
of equilibrium equations. We assume that the bulk forces are independent of the stressed 
state (Fukoi j e 0). From this and (1.16) we obtain the representation 

F . . . .  K(u,l, 1 -~-u~p~) i X(u, ,  u~) -i- F~ ~ij, xh), ( 1 . 1 7 )  

where sii = ui,i, s12 = y. The last statement enables us to simplify the equations (1.13): 

POll U" : :  0"2"2 -- ~1~ (i.18) 

The equations (1.18) constitute an algebraic system with respect to the stress or deformations. 
Suppose that the solution of the system has the form 

~ j  = o~j(~/, , xh), ~i.i .... ~i~(~ / , .  xh) (h . 1 , 2 ) .  (i,19) 

(The function F ~ must be such that the solution is independent of the parameter K.) 

The requirement that the continuity conditions (1.9), (i.ii) coincide imposes a re- 
striction on the admissible class of functions F ~ The minimal restriction on F ~ is that 
(1.9), (i.ii) coincide on the solution (1.19). From a comparison of (1.9) with (i.ii) it 
follows that on the solution (1.19) the equations 

o (ff i j ,  xa )  ~ 1 6 n  ' ,o = M i f f s ,  ;0 = F~ n eij, = ~22 ~12  ~f~n (1.20) 

must be satisfied. Hereafter the equations (1.20) will be regarded as an algebraic system 
with respect to the stresses or deformations. Then the function F ~ must be such that the 
solutions of the systems (1.18), (1.20) will coincide with each other and with the given so- 
lution (1.19). 

The methods for constructing the function T ~ can be most conveniently illustrated by 
using a simpler one-dimensional situation. In the one-dimensional case the problem reduces 
to the following. It is required to find a function of two variables z = f(x, y) such that 
on a given curve y = y(x), x = x(y) 

/~ (x, y) -~-- Ky,  /u(x, y) ~ Mx.  

We shall try to find a solution in the form of a sum f = ~(x, y) ~ ~(x, y), where ~(x, y) is 
the general solution of the homogeneous problems for y = y(x) ~x~--_0, ~y ---~0, and the function 
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is the particular solution of the inhomogeneous problem. The function r defines in three- 
dimensional space a surface with normal ~. Obviously, on the curve y = y(x) ~const, ~ = 
{0, 0, i}. Thus, the surface z = r y) must be tangent to the plane z = const along the 
curve y = y(x). The particular solution will be sought in the form 

q' = %(x) + qq(y) + ~xu, 

where ~ = const. 

Then  ] (x, y) = (K --  ~) ~ y (x) dx -[- (M --  ~) ~ x (y) dy ~- ~xy + �9 (x, y). 

The constructions considered above can be generalized to a multidimensional problem. 
Suppose that ~(~ij, oij, Xk) is the general solution of the homogeneous problem, i.e., on 
the functions (i.19) ~sij_= 0, ~oij--~_ O. One of the constructions of $ is the following: 

(~ := ~ [ ~  - -  ~ ( ~ , ~ ,  x~), ~ - -  e ~ ( o ~ ,  x,3l,  

where ~ is an arbitrary function which is equal to zero, together with its first derivatives, 
when the arguments are zero. The particular solution of the inhomogeneous case can be sought 
in the form 

where the functions ~i are solutions of the differential equations 

~ . ~ j  ( ~ , ,  x,~) : ( i  - -  ~) aij (~,,, x,J, 

�9 ~ . ~  (a,,,~, x,,) = (K - ~) e~ (a,~,,, x,3. 
( 1 . 2 1 )  

Let us consider in more detail the case of a linearly elastic body: 

Ell = a o l l  4-  baz2, 822 "-- bal l  + aO22, El2 - - -  CO12, 

w h e r e  A = 2~(1  -- v ) / ( 1  -- 2 v ) ,  B = 2 ~ v / ( 1  -- 2 v ) ,  C = ~  f o r  p l a n e  d e f o r m a t i o n ;  A = A* + 2~,  B = 
t * ,  C = ~ ,  t *  = E v / ( 1  --  v 2) f o r  a p l a n e  s t r e s s e d  s t a t e ;  a = A / ( A 2  -- B 2 ) ;  b = - -B/(A 2 --  B2) ;  
c = l / C ;  ~ ,  v ,  E a r e  e l a s t i c  c o n s t a n t s .  The s o l u t i o n  of  t h e  e q u a t i o n s  ( 1 . 2 1 )  h a s  t h e  f o r m  

Now l e t  u s  c o n s i d e r  t h e  r e s t r i c t i o n s  on  t h e  f u n c t i o n a l s  t h a t  a r e  i m p o s e d  by  t h e  s y s t e m  
( 1 . 2 ) .  We a s s u m e  t h a t  t h e  b u l k  f o r c e s  a r e  i n d e p e n d e n t  o f  t h e  d i s p l a c e m e n t s  and  c o n s e q u e n t l y  
t h e  f u n c t i o n  X i n  t h e  r e p r e s e n t a t i o n  ( 1 . 1 7 )  i s  l i n e a r  (X = Y~u~ + Y 2 u 2 ) .  The f u n c t i o n  F i s  
s u c h  t h a t  t h e  s y s t e m  ( 1 . 2 ) ,  t a k i n g  a c c o u n t  of  ( 1 . 3 ) ,  i s  t r a n s f o r m e d  t o  t h e  f o r m  

(K --  M)pl  -~ Y1 = O, (K --M)p., .  + Y.z = O. 

From this we obtain a necessary condition for the solvability of the problem: K # H, and 
the mechanical meaning of the coefficients: Yi = (K -- M)Xi, where X i are the components Of the 
volumetric forces. 

Thus, the failure problems under consideration (in particular the problems relating to 
deformation without discontinuities) admit of infinitely many variational formulations corre- 
sponding to the various generating functions F: 

b" = K(tfipl -{-u2pe) + Y1ul + Yiu.2 + O(e u, au, xh) + ~l(gi~, XK) + 

We shall indicate the most important special cases: 
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i) Let ~ = 0, K = 0, M = i, ~ m 0. Then the variational principle reduces to the 
generalized principle of possible displacements. This variant, as well as the ex- 
amples of the solution of the boundary-valde problems of the stable and unstable 
development of cracks were considered [2, 3]. 

2) If ~ = 0, K = i, M = 0, * m 0, the principle reduces to the generalized Castigliano 
principle. 

3) The case ~ = i, K = 0, M = i, * m 0 corresponds to Reissner's principle. 

2. We consider the most important types of boundary conditions. The conditions on the 
external boundary (1.15), taking account of the equations (1.18), are transformed to the 
form 

ME,Su, + ME~Su., + KuISE, + Ku.,.SE., = 8H. (2.1) 

Obviously the function N can depend only the the arguments ui, El, x k. Suppose that 2 = 
ZIKu~ + E2Ku~ and on the boundary only the stresses (u i = u~) vary. The indicated form of 
describes the given boundary displacements. If on the boundary only the displacements (Ei= 

O 2~) vary, then ~ = ME~ul + ME2u2. This case corresponds to given boundary stresses. 

Now let us assume that on the boundary we admit the possibility of variations both of 
the displacements and of the stresses. Without loss of generality, we can assume that ~ = 
g(ui, Xk) + ~(Zi, Xk). From (2,1) it follows that 

ME 1 : gu 1 (ul, x~,  ,~IZ~ := g% (ui, xk); ( 2 . 2 )  
K u l  = ~z l  (Ei, xk), K u  ~ = ~ (E~, xk). (2.3) 

This variant means that on the boundary we are given the stresses as functions of the dis- 
placements or the displacements as functions of the stresses. The conditions (2.2), (2.3) 
express the same mechanical relationship. Therefore, the functions g,~ must be interrelated. 

One fact is particularly worth noting. If we formally set M = K, then the left side of 
(2.1) can be represented as a total differential. Therefore, setting ~ = M(Zaul + E2u2), we 
can make sure that the boundary conditions are identically satisfied. Consequently, in this 
case the information concerning the boundary conditions is excluded from the functional, and 
the variational problem becomes, generally speaking, indeterminate. Such a situation is 
precluded by the restriction M # K obtained above from other considerations. 

Now let us consider the question of the conditions on the line of discontinuity. If we 
take account of the fact that the systems (1.18) and (1.20) are equivalent, we can transform 

the conditions (1.14) to the form 

M~nSR n ~. ~ l ~ m S R  m + K R n S ~  n + K R m 6 ~ m  = ~U. (2.4) 

On the line of possibility discontinuity L the condition that the regions S-, S + do not over- 
lap must be satisfied. For the numerical solution of specific problems, this condition can 
be most conveniently satisfied by setting U sufficiently high if the test values of Rn, R m 
yield overlapping regions [2]. Suppose that the functional depends only the displacements and 
there are no other kinematic restrictions on the line of discontinuity. Then it follows 

from (2.4) that 

A , ~ :  UR,~(R,, Rm, X~, Am = Utah(R,,, Rm, x~. (2.5) 

The last conditions have the meaning of relations connecting the normal and tangential 
stresses acting on the line to the discontinuities in the displacements. If on L the normal 
component of the discontinuity is explicitly related to the tangential component 

l ( n . . ,  n,,~) = o ,  

then the second condition has the form 

(2.6) 
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/.m flu,,,,- :.) -/.. (u..,- : :  o. 

By analogy with the definition of dilatancy as a material's property of changing its 
volume when slip occurs, the condition (2.6) can be called the condition of localized dila- 
tancy. If the functional depends only on the stresses and there are no other restrictions 
on the line of discontinuity, then on L the following conditions are satisfied: 

- -  F - -  + ~, , ( 2 . 7 )  

these have the same meaning as (2.5). In the general case, when the functional depends both 
on the stresses and on the displacements, the problem satisfies the conditions (2.5)~ (2.7), 
and the function U must be such that its partial derivatives will describe the same connection 
between the stresses and the displacement discontinuities. 

Starting from (2.1), (2.4), we can consider more complicated boundary conditions: and 
properties of the material on the line of discontinuity. 

3. Earlier, we assumed that the lines of possible discontinuity are kno~ in advance. 
In the exact formulation, the lines must be determined in the process solving the problem. 
If the line of discontinuity is not known in advance, then W is a functional with respect 
to the curve L, the stresses, the displacements, and the variables Zr- It is natural to 
strengthen the variational principle we have adopted and consider those lines of discontinuity 

which give the functional the deepest minimum (or stationary value). Suppose that zl xj(1)~ 

x~=:x2(1),g~[ll, Lz] are parametric equations of the curve L,, s Y(x~)~+ (x~l ~ . The variational 
line of possible discontinuity will be considered close to the initial line in the sense of 
first-order proximity (~xi, ~x~<< i). The necessary condition for stationarity of the 
functional leads to the previous boundary conditions, relations on the line of possible dis- 
continuity, and equations in the regions of smoothness. Additional relations will be ob- 
tained for the lines of possible discontinuity. Omitting the intermediate calculations, we 
give the final results. If the functional is independent of the stresses and the variations 
~Rm, ~R n are independent or are related by a condition independent of xi, then 

( u  s i ,  c~)' -~. u.,.~ -i- (• cos  ~ ) '  .+ xt  - [ F] cos  ~ - - 0 ,  

- -  (U  cos  ~ ) '  + L;.~ -I- ( •  s . i .  ~z)' + • - -  IF]  s i ,  ~z .:-. 0 ,  
( 3 . 1 )  

where the prime denotes the operator d/sdt; IF] = F+--F-; 

• ..... AiHi, i~-AJL~, l ;  •  AiRi ,  ~ ~ A.~I?2.~; x~ - : A i R ~ - - A . ~ f l  i. 

The equations (3.1) are obtained on the assumption that the two variations ~x i are inde- 
pendent. Consequently, (3.1) contains information on the variation of L along itself as 
well. It can be shown that the sum of these equations, multiplied by (--sin a) and cos ~, 
does in fact lead to an identity. As the independent equation, it is natural to take a 
linear combination of the equations (3.1) with the coefficients cos a, sin ~: 

U ~ '  + U.~r cos a § U.,., s i ,  a + (x~)' -? • cos~z + • sin o: - -  IF]  = 0. (3.2) 

In the special case in which there are only tangential discontinuities in displacement:, (3.2) 
becomes the corresponding equation of [i]. It should be noted that for central forces of 
interaction between the two sides of the discontinuity (the stress vector is directed along 

the displacement discontinuity vector) U = U (VH~@]?~, x/e), • ~0, and Eq. (3.2) is simpli- 
fied. 

If the functional is independent of the derivatives of the displacements, then the 
equation of the "extremal" line of discontinuity reduces to the following: 
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U s '  -'~ U,,, cos o: 1- U,,,., s i .  = [ , /~. j  - -  [ M , I  cos = IM._,I s i .  = - -  [l",1 O, 

w h e r e  3l~ . . . . .  /"Pl (%,1, ~ c o s  ~ --[.. ell..,, ~ s i ,  a )  - -  /~'J'2 ( cit~, ~ c o s  o: q-  %.,,.~ s i n  a).; 

,'I.{~ = - -  1"~,, [ - -  (zH - -  z ~ )  si , ,  r -4- 2 % ,  cos =1 § 

-t /"l ,~ [(o', t - -  a.,~) cos r162 4-. 2%:  .'~i, r162 

In the general case, when the functional is dependent both on the displacements and on 
the stresses: 

U ~ '  -I  U ~  cos  ~ -1- t:.~ si,~ ~ 4- ( •  4- (• cos ~ -1- • si~l ~)  - -  

Let us now consider the question of the conditions for the emergence of the line of 
discontinuity to the external boundary F. For definiteness, we shall consider the boundary 
condition at the point t = t2. Since xi(t2)~F , it follows that the variations ~xi at this 
point are interrelated: 6x~ = ~H sin ~, ~x2 = --~H cos ~, where ~H is a parameter. If the 
position of the end of the line of discontinuity is known (for example, xi(t2) coincides 
either with a point of discontinuity of the boundary displacements or stresses or with a 
point at which the type of boundary condition changes), then ~H = 0 and the boundary con- 

o dition has the form xi(t2) = x~, where the x i are given. This condition satisfies the re- 
quirement that W be stationary. If the position of the end of the line of discontinuity is 
unknown, then ~H # 0 and the stationarity requirement leads to the following boundary con- 
dition: 

- U  cos  (q~ - ~ )  - •  si,~ ( r  - ~ )  -t- [ M ~ I  s i , l  ('1~ - -  ~ ) - Q  = O, 

Thus, the strengthened variational principle enables us to determine both the discon- 
tinuous fields of displacements and stresses and the positions of the lines of discontinuity. 
However, in taking this approach we do not take account of the history of the loads imposed 
on the material, and in the general case the "extremal" lines of discontinuity can serve only 
as estimates of the real deformation processes. (Taking account of the loading history leads 
to a prohibition of the variations ~x i on those segments of L on which the discontinuity has 
already taken place). 

For specified loading parameters, the discontinuities are not realized and the station- 
ary value of the functional (i.i) will be attained on the class of smooth functions, even 
though we search for it in the class of discontinuous functions. This result has some 
features in common with the results obtained in [4]. Earlier, we considered the conditions 
for stationarity of the complete functional (i.i) only in the space of stresses and dis- 
placements. We can consider different transformations of the variational problems by the 
methods developed in [5, 6]. ~urther references to studies on the use of variational methods 
in problems of material failure and model representations are contained in [i, 2]. 

The author wishes to express his gratitude to E. I. Shemyakin for his valuable comments. 
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